平成 30 年度 福岡県 数学 正答

1 79							※ (i	配点)	
1	(1)		-3		(2)	(2) 4a + 9b		2	2
								2	2
	(3)		$-2\sqrt{6}$		(4)	x = 7	2	順不 同両 解	2
	(5)		x = -5, x = 2		(6)	3 本		3	3
	(57)	1 9				およそ 350 人		3 両解	
	(7)						※ (,	小計)	
	(9)	記号	エ	式		$y = 2x^2$		2:	1

	(1)	ウ、カ
2	(2)	(証明) 整数 n を用いると、 (例) 連続する 2 つの 3 の倍数のうち、小さい方の数は 3n、大きい方の数は 3n+3 と表される。大きい方の数の 2 乗から小さい方の数の 2 乗をひいた差は、 (3n+3)²-(3n)² =9n²+18n+9-9n² =18n+9 =3(6n+3) =3{3n+(3n+3)} 3n、3n+3 はもとの 2 つの数だから、3{3n+(3n+3)}はもとの 2 つの数の和の 3 倍である。 したがって、連続する 2 つの 3 の倍数において、大きい方の数の 2 乗から小さい方の数の 2 乗をひいた差は、もとの 2 つの数の和の 3 倍に等しくなる。

	(1)	(例) 度数の合計が異なる場合
3	(2)	(説明) (例) 中央値がふくまれる階級は、A 中学校が 15 冊以上 20 冊未満で、B 中学校 は 10 冊以上 15 冊未満であり、中央値は A 中学校の方が B 中学校より大き いから。

※(配点)	
2	順不同 両解
	5
※(小計)	
	7
※(配点)	
	2
	3
※(小計)	
[

5

	(1)	1	(2)	毎分 $\frac{3}{2}$ cm		
4	(3)	ら水面まで (例) 9≦x≦15 (直線なので 9≦x≦15 直線になる ①、②を連	の高において、これにいて、立方	5 B について、水そ 5 A に水を入れはじめてから x 分後の底かさを y cm とする。 t 3水そ 5 A についてのグラフは、傾きが 2 で、点 $(9,27)$ を通るは $y=2x+9\cdots$ ① t 3水そ 5 B についてのグラフは、 2 点 $(9,30)$, $(15,38)$ を通る、式は、 $y=\frac{4}{3}x+18\cdots$ ② 程式として解くと、 $x=\frac{27}{2}$, $y=36$ 5、これは問題にあ 5 。		
		水そうAに水を入れはじめてから 13 分 30 秒後				

	(1)	AB = DC	∠ABC = ∠DCB	
5	(2)	(証明) (例) △OCF と△EDF において 対頂角は等しいから ∠OFC = ∠EFD…① 仮定から ∠ACB = ∠DBC…② OB = OD より、△ODB は二等辺三角分 ∠DBC = ∠FDE…③ ②、③より ∠ACB = ∠FDE…④ ①、④より 2 組の角がそれぞれ等しいる △OCF ∽ △EDF		
	(3) $\frac{15\sqrt{3}}{16} \text{ cm}^2$			

6	(1)	26 倍	(2)	$\frac{2\sqrt{6}}{3}$ cm
-		27		3

※(配点)	
2	2
	5
※(小計)	
[
-	9

順不同 両解

5

11

	※(配点
	※(小計
	
	※(配点

